济南优质电子元件电源供应应用中,一般包含电源转接器、桌上型电源或服务器电源。电子元件公司电源供应所需要的被动元件,必须是暴露于温度起伏大的环境中仍能保持产品高稳定度,并拥有超低ESR(等效串联电阻)值与高潋波电流额定值。该系列产品的高容值和低等效串连电阻值(ESR)特性允许在高频率下仍维持低阻抗,以支持各式应用中的噪声抑制和潋波吸收功能。于此应用中,空间是关键因素,成本与最高效率为优先考量。
按照优质电子元件公司颜色来区分:黑色的电容最差,绿色的电容要好一些,蓝色的电容要比绿色的电容又要强一点。所以我们一般在主板上看到的CPU周围滤波电容都用的是绿色的,而其他地方有些则是黑色的。从指标上区别:电容电压的范围非常重要,可以在电容上看到“+、-”的字样,这是电容电压的承受范围,这个数值越小电容则越好。看电容的容量:按照Intel主板技术白皮书的说法,现在济南电子元件主板CPU插槽附近的滤波电容单个容量最低为1000μF,一般主板都采用1000μF的电解电容(很会精打细算啊),而在Intel的原装主板上,这样的电容单个容量高达3300μF,这就是大家推崇Intel主板稳定性的原因之一。
济南电子元件阻抗低到什么程度才算合理,是不是越低越好,这个在LED应用中并无明显的共识或相应的标准。国内低阻抗的电解设计方案中对降低阻抗通常采用两个方案,一是提高电解液的含水量,一是用低密度或低厚度的电解纸。然而过犹不及, 许多设计工程师认为,低阻抗产品在高频电路中应用时,可有效地减少电解自身发热,从而达到提高电解应用寿命的目的。理论上单从电解自身发热来看,LOWE S R电解的设计是满足于上述理论条件的,但电解在LED应用中我们不得不考量LED应用的实际温度环境,即产品耐高温的特性,这个特性与LOW ESR电解通常设计方案相当于天平的两端,阻抗越低,耐高温能力反而就越弱。因为,越低阻抗的电解,优质电子元件电解液含水量率越高或电解纸密度及厚度较小,电解液的饱和蒸汽压降低,在高温状况下容易出现鼓底。这样我们通过改进ESR值,带来的自身发热微弱的优势,与产品在耐高温特性大幅减弱相比,便得不偿失。
济南电子元件固态铝电解电容具有极长的使用寿命(使用寿命超过50年)。与液态铝电解电容相比,可以算作“长命百岁”了。它不会被击穿,也不必担心液态电解质干涸以及外泄影响主板稳定性。由于没有液态电解质诸多问题的困扰,固态铝电解电容使主板更加稳定可靠。固态的电解质在高热环境下不会像液态电解质那样蒸发膨胀,甚至燃烧。即使电容的温度超过其耐受极限,电子元件公司固态电解质仅仅是熔化,这样不会引发电容金属外壳爆裂,因而十分安全。工作温度直接影响到电解电容的寿命,固态电解电容与液态电解电容在相同温度环境下寿命明显较长。
济南电子元件电容器的介质对直流电流具有很大的阻碍作用。然而,由于铝氧化膜介质上浸有电解液,在施加电压时,重新形成的以及修复氧化膜的时候会产生一种很小的称之为漏电流的电流。通常,漏电流会随着温度和电压的升高而增大。它的计算公式大致是:I=K×CV。漏电流I的单位是μA,K是常数。一般来说,优质电子元件电容器容量愈高,漏电流就愈大。从公式可得知额定电压愈高,漏电流也愈大,因此降低工作电压亦可降低漏电流。